CBSE Board
 Class XII Mathematics
 Sample Paper - 2
 Term 2-2021-22

Time: 2 hours
Total Marks: 40

General Instructions:

1. This question paper contains three sections $-A, B$ and C. Each part is compulsory.
2. Section - A has 6 short answer type (SA1) questions of 2 marks each
3. Section - B has 4 short answer type (SA2) questions of 3 marks each.
4. Section - C has 4 long answer type questions (LA) of 4 marks each.
5. There is an internal choice in some of the questions.
6. Q14 is a case-based problem having 2 sub parts of 2 marks each.

Section A
 Q1 - Q6 are of 2 marks each.

1. Integrate $\int \log \left(1+x^{2}\right) d x$

OR

Integrate $\int \frac{\sin x}{\sin (x-a)} d x$
2. Find the sum of the order and the degree of the differential equation $\left(\frac{d y}{d x}\right)^{2}+\frac{d}{d x}\left(\frac{d y}{d x}\right)-y=4$
3. If \vec{a} and \vec{b} are two vectors of magnitude 3 and $\frac{2}{3}$ respectively such that $\vec{a} \times \vec{b}$ is a unit vector, write the angle between \vec{a} and \vec{b}.
4. Find the distance of the plane $3 x-4 y+12 z=3$ from the origin.
5. A company has two plants to manufacturing scooters. Plant I manufactures 70% of the scooters and plant II manufactures 30\%. At plant I, 30\% of the scooters are rated of standard quality and at plant II, 90% of the scooters are rated of standard quality. A scooter is chosen at random and is found to be of standard quality. Find the probability that it is manufactured by plant II.
6. A die, whose faces are marked 1, 2, 3 in red and 4, 5, 6 in green, is tossed. Let A be the event "number obtained is even" and B be the event "Number obtained is red". Find $P(A \cap B)$ if A and B are independent events.

Section B

Q7 - Q10 are of 3 marks each

7. Evaluate: $\int_{0}^{p} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{p-x}} d x$
8. If $e^{y}(x+1)=1$, then show that $\frac{d y}{d x}=-e^{y}$.

OR

Obtain the differential equation of the family of circles passing through the points $(a, 0)$ and ($-a, 0$).
9. Given that $\vec{b}=2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\vec{c}=\lambda \hat{i}+2 \hat{j}+3 \hat{k}$, such that the scalar product of $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and unit vector along sum of the given two vectors \vec{b} and \vec{c} is unity.
10. Find the equation of the plane passing through the points $(1,2,3)$ and $(0,-1$, 0) and parallel to the line $\frac{x-1}{2}=\frac{y+2}{3}=\frac{z}{-3}$.

OR

Find the co-ordinates of points on line $\frac{x-1}{2}=\frac{y+2}{3}=\frac{z-3}{6}$, which are at a distance of 3 units from the point ($1,-2,3$).

Section C

Q11 - Q14 are of 4 marks each

11. Integrate $\int \frac{1}{x \log x(2+\log x)} d x$
12. Calculate the area between the curve $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the x-axis between $x=$ 0 to $x=a$.

Target Mathematics by- Dr.Agyat Gupta

 Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony visit us: agyatgupta.com;Ph. :7000636110(O) Mobile: $\underline{9425109601(P)}$ ORIf $A O B$ is a triangle in the first quadrant of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where $O A=$ a and $O B=b$, then find the area enclosed between the chord $A B$ and the arc $A B$ of the ellipse.
13. Find the distance between the parallel planes $\vec{r} \cdot 2 i-1 \hat{j}+3 \hat{k}=4$ and r. $6 \hat{i}-3 \hat{j}+9 \hat{k}+13=0$

14. Case Study

In a factory which manufactures bulbs, machines X, Y and Z manufacture 1000, 2000, 3000 bulbs, respectively. Of their outputs, 1\%, 1.5\% and 2% are defective bulbs. A bulb is drawn at random and is found to be defective.
Based on the above information, answer the following question.
i. What is the probability that machine X manufactures it?
ii. What is the probability that machine Y manufactures it?

Target Mathematics by- Dr.Agyat Gupta
Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony visit us: agyatgupta.com;Ph. :7000636110(O) Mobile: 9425109601(P)

Solution

Section A

1. $I=\int \log \left(1+x^{2}\right) d x$

$$
\begin{aligned}
& I=\log \left(1+x^{2}\right) \int 1 d x-\int\left(\frac{d}{d x} \log \left(1+x^{2}\right) \int d x\right) \\
& I=x \log \left(1+x^{2}\right)-\int\left(\frac{1}{1+x^{2}} \times 2 x \times x\right) d x+c \\
& I=x \log \left(1+x^{2}\right)-\int\left(\frac{2 x^{2}}{1+x^{2}}\right) d x+c \\
& I=x \log \left(1+x^{2}\right)-2 \int\left(\frac{x^{2}+1-1}{1+x^{2}}\right) d x+c \\
& I=x \log \left(1+x^{2}\right)-2 \int\left(1-\frac{1}{1+x^{2}}\right) d x+c \\
& I=x \log \left(1+x^{2}\right)-2 x+2 \tan ^{-1} x+c
\end{aligned}
$$

OR

$$
\begin{aligned}
& I=\int \frac{\sin x}{\sin (x-a)} d x \\
& I=\int \frac{\sin (x-a+a)}{\sin (x-a)} d x \\
& I=\int \frac{\sin (x-a) \cos a+\cos (x-a) \sin a}{\sin (x-a)} d x \\
& I=\int(\cos a+\tan (x-a) \sin a) d x \\
& I=x \cos a+\sin a \log |\sec (x-a)|+c
\end{aligned}
$$

2. Given DE is $\left(\frac{d y}{d x}\right)^{2}+\frac{d}{d x}\left(\frac{d y}{d x}\right)-y=4$

$$
\Rightarrow\left(\frac{d y}{d x}\right)^{2}+\frac{d^{2} y}{d x^{2}}-y=4
$$

Order is 2
Degree is 1
So, the sum is 3 .
Dr. AGYAT GUPTA MOB: $9425109601(\mathrm{P}) ; 7000636110(\mathrm{O})$

THBAT MUTHEWHIILS Jhe Excellence Key...

3. We know that $\sin \theta=\frac{|\vec{a} \times \vec{b}|}{|\vec{a}||\vec{b}|}$, where θ is the angle between \vec{a} and \vec{b}

Sin ce $|\vec{a}|=3$ (given), $|\vec{b}|=\frac{2}{3}$ (given), $|\vec{a} \times \vec{b}|=1$ (given)
$\Rightarrow \sin \theta=\frac{1}{3 \times \frac{2}{3}}$
$\Rightarrow \sin \theta=\frac{1}{2}$
$\Rightarrow \sin \theta=\sin \frac{\pi}{6}$
$\Rightarrow \theta=\frac{\pi}{6}$
Thus, the angle between \vec{a} and \vec{b} is $\frac{\pi}{6}$.
4. The distance of the plane $3 x-4 y+12 z-3=0$ from the origin $(0,0,0)$ is
$=\left|\frac{3(0)-4(0)+12(0)-3}{\sqrt{(3)^{2}+(-4)^{2}+(12)^{2}}}\right|$
$=\left|\frac{0-0+0-3}{\sqrt{9+16+144}}\right|$
$=\left|\frac{-3}{\sqrt{169}}\right|$
$=\left|\frac{-3}{13}\right|$
$=\frac{3}{13}$
5. $\mathrm{P}(\mathrm{I})=\frac{70}{100}, \mathrm{P}(\mathrm{II})=\frac{30}{100}$

E : standard quality
$P(E / I)=\frac{30}{100}, P(E / I I)=\frac{90}{100}$
$P(I I / E)=\frac{P(I I) \cdot P(E / I I)}{P(I) \cdot P(E / I)+P(I I) \cdot P(E / I I)}$
Target Mathematics by Dr. Agyat Gupta

Target Mathematics by- Dr.Agyat Gupta Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony visit us: agyatgupta.com; Ph. :7000636110(O) Mobile : 9425109601(P)

$$
\begin{aligned}
& =\frac{\frac{30}{100} \times \frac{90}{100}}{\frac{70}{100} \times \frac{30}{100}+\frac{30}{100} \times \frac{90}{100}} \\
& =\frac{9}{16}
\end{aligned}
$$

6. It is given that
$P(A)=\frac{3}{6}=\frac{1}{2} \& P(B)=\frac{3}{6}=\frac{1}{2}$
$P(A \cap B)=P($ Numbers that are even as well as red)
$=P$ (Number appearing is 2)
$=\frac{1}{6}$
Clearly, $P(A \cap B) \neq P(A) \times P(B)$
Hence, A and B are not independent events.

Section B

7. Let $I=\int_{0}^{p} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{p-x}} d x$

According to property,
$\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$
$I=\int_{0}^{p} \frac{\sqrt{p-x}}{\sqrt{p-x}+\sqrt{x}} d x$
Adding equations (1) and (2), we get
$2 I=\int_{0}^{p} \frac{\sqrt{x}+\sqrt{p-x}}{\sqrt{x}+\sqrt{p-x}} d x$
$=\int_{0}^{p} 1 d x=[x]_{0}^{p}=p-0=p$
Thus, $2 \mathrm{I}=\mathrm{p} \Rightarrow \mathrm{I}=\frac{\mathrm{p}}{2}$
8. On differentiating $e^{y}(x+1)=1$ w.r.t x, we get

$$
\begin{aligned}
& e^{y}+(x+1) e^{y} \frac{d y}{d x}=0 \\
& \Rightarrow e^{y}+\frac{d y}{d x}=0 \\
& \Rightarrow \frac{d y}{d x}=-e^{y}
\end{aligned}
$$

$x^{2}+(y-b)^{2}=a^{2}+b^{2}$ or $x^{2}+y^{2}-2 b y=a^{2}$
$2 x+2 y \frac{d y}{d x}-2 b \frac{d y}{d x}=0$
$\Rightarrow 2 b=\frac{2 x+2 y \frac{d y}{d x}}{\frac{d y}{d x}}$
Substituting in (1), we get
$\left(x^{2}-y^{2}-a^{2}\right) \frac{d y}{d x}-2 x y=0$
9. Given that
$\vec{b}=2 \hat{i}+4 \hat{j}-5 k$
$\vec{c}=\lambda \hat{i}+2 \hat{j}+3 k$
Now consider the sum of the vectors $\vec{b}+\vec{c}$:
$\vec{b}+\vec{c}=(2 \hat{i}+4 \hat{j}-5 k)+(\lambda \hat{i}+2 \hat{j}+3 k)$
$\Rightarrow \overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}}=(2+\lambda) \hat{i}+6 \hat{\mathrm{j}}-2 \mathrm{k}$
Let \hat{n} be the unit vector along the sum of vectors $\vec{b}+\vec{c}$:
$\hat{n}=\frac{(2+\lambda) \hat{i}+6 \hat{j}-2 k}{\sqrt{(2+\lambda)^{2}+6^{2}+2^{2}}}$
The scalar product of \vec{a} and n is 1 . Thus,
$\vec{a} \cdot \hat{n}=(\hat{i}+\hat{j}+\hat{k}) \cdot\left(\frac{(2+\lambda) \hat{i}+6 \hat{j}-2 \hat{k}}{\sqrt{(2+\lambda)^{2}+6^{2}+2^{2}}}\right)$
$\Rightarrow 1=\frac{1(2+\lambda)+1 \cdot 6-1 \cdot 2}{\sqrt{(2+\lambda)^{2}+6^{2}+2^{2}}}$
$\Rightarrow \sqrt{(2+\lambda)^{2}+6^{2}+2^{2}}=2+\lambda+6-2$
$\Rightarrow \sqrt{(2+\lambda)^{2}+6^{2}+2^{2}}=\lambda+6$
$\Rightarrow(2+\lambda)^{2}+40=(\lambda+6)^{2}$
$\Rightarrow \lambda^{2}+4 \lambda+4+40=\lambda^{2}+12 \lambda+36$
$\Rightarrow 4 \lambda+44=12 \lambda+36$
$\Rightarrow 8 \lambda=8$
$\Rightarrow \lambda=1$

Target Mathematics by- Dr.Agyat Gupta

Thus, n is:
$\mathrm{n}=\frac{(2+1) \hat{\mathrm{i}}+6 \hat{\mathrm{j}}-2 \mathrm{k}}{\sqrt{(2+1)^{2}+6^{2}+2^{2}}}$
$\Rightarrow \mathrm{n}=\frac{3 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}-2 \mathrm{k}}{\sqrt{3^{2}+6^{2}+2^{2}}}$
$\Rightarrow \mathrm{n}=\frac{3 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}-2 \mathrm{k}}{\sqrt{49}}$
$\Rightarrow \mathrm{n}=\frac{3 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}-2 \mathrm{k}}{7}$
$\Rightarrow n=\frac{3}{7} \hat{i}+\frac{6}{7} \hat{j}-\frac{2}{7} k$
10. Let the plane through $(1,2,3)$ be $a(x-1)+b(y-2)+c(z-3)=0$

This plane is parallel to the line
$\frac{x-1}{2}=\frac{y+2}{3}=\frac{z}{-3}$
$\therefore \quad \mathrm{a} \times 2+\mathrm{b} \times 3+\mathrm{c} \times(-3)=0$
$\Rightarrow \quad 2 \mathrm{a}+3 \mathrm{~b}-3 \mathrm{c}=0$
Also (1) passes through ($0,-1,0$)
So, $a+3 b+3 c=0$ \qquad
Solving (2) and (3), we get
$\frac{a}{9+9}=\frac{b}{-3-6}=\frac{c}{6-3}$
$\Rightarrow \frac{\mathrm{a}}{6}=\frac{\mathrm{b}}{-3}=\frac{\mathrm{c}}{1}$
Hence the required plane is given by
$6(x-1)-3(y-2)+1(z-3)=0$
$\Rightarrow 6 x-3 y+z=3$
OR
Given equation is
$\frac{x-1}{2}=\frac{y+2}{3}=\frac{z-3}{6}=K$
Any point on this line will be of the form ($2 \mathrm{~K}+1,3 \mathrm{~K}-2,6 \mathrm{~K}+3$)
Distance between points $(2 K+1,3 K-2,6 K+3)$ and $(1,-2,3)$ is 3 units.
i.e., $\sqrt{(2 \mathrm{~K}+1-1)^{2}+(3 \mathrm{~K}-2+2)^{2}+(6 \mathrm{~K}+3-3)^{2}}=3$
$\sqrt{4 \mathrm{~K}^{2}+9 \mathrm{k}^{2}+36 \mathrm{k}^{2}}=3$
$\Rightarrow 7 \mathrm{k}=3 \Rightarrow \mathrm{k}=\frac{3}{7}$
\therefore Required point is
$\left(2 \times \frac{3}{7}+1,3 \times \frac{3}{7}-2,6 \times \frac{3}{7}+3\right)=\left(\frac{13}{7}, \frac{-5}{7}, \frac{39}{7}\right)$ is the required point.

Section C

11. $I=\int \frac{1}{x \log x(2+\log x)} d x$

Put $\log x=t \Rightarrow d x / x=d t$
$I=\int \frac{1}{t(2+t)} d t$
Consider,
$\frac{1}{t(2+t)}=\frac{A}{t}+\frac{B}{2+t}$
$\Rightarrow \frac{1}{\mathrm{t}(2+\mathrm{t})}=\frac{\mathrm{A}(2+\mathrm{t})+\mathrm{Bt}}{\mathrm{t}(2+\mathrm{t})}$
$\Rightarrow 1=\mathrm{A}(2+\mathrm{t})+\mathrm{Bt}$
$2 \mathrm{~A}+2 \mathrm{t}+\mathrm{Bt}=1$
$2 A+(2+B) t=1$
Comparing on both sides we get
$A=1 / 2$ and $B=-2$
$\Rightarrow \frac{1}{\mathrm{t}(2+\mathrm{t})}=\frac{\frac{1}{2}}{\mathrm{t}}+\frac{-2}{2+\mathrm{t}}=\frac{1}{2 \mathrm{t}}-\frac{2}{2+\mathrm{t}}$
$\Rightarrow \mathrm{I}=\int\left(\frac{1}{2 \mathrm{t}}-\frac{2}{2+\mathrm{t}}\right) \mathrm{dt}$
$I=\frac{1}{2} \log |t|-2 \log |2+t|+c$
$I=\frac{1}{2} \log (\log x)-2 \log (2+\log x)+c$
12.
 The Excellence Yey...

Required area is given by
$\int_{0}^{a} b \sqrt{1-\frac{x^{2}}{a^{2}}} d x=\frac{b}{a} \int_{0}^{a} \sqrt{a^{2}-x^{2}} d x$
$=\frac{b}{a}\left[\frac{x \sqrt{a^{2}-x^{2}}}{2}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}\right]_{0}^{a}$
$=\frac{b}{2 a}\left[\left(0+a^{2} \sin ^{-1}(1)\right)-\left(0+a^{2} \sin ^{-1}(0)\right)\right]$
$=\frac{b}{2 a}\left(a^{2} \times \frac{\pi}{2}\right)$
$=\frac{1}{4} \pi \mathrm{ab}$

OR

Area of triangle $A O B$
$=\frac{1}{2} \times O A \times O B$
$=\frac{1}{2} a b$
Now, area of ellipse in the first quadrant is given by
$\int_{0}^{a} b \sqrt{1-\frac{x^{2}}{a^{2}}} d x=\frac{b}{a} \int_{0}^{a} \sqrt{a^{2}-x^{2}} d x$
$=\frac{b}{a}\left[\frac{x \sqrt{a^{2}-x^{2}}}{2}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}\right]_{0}^{a}$
$=\frac{b}{2 a}\left[\left(0+a^{2} \sin ^{-1}(1)\right)-\left(0+a^{2} \sin ^{-1}(0)\right)\right]$

THRAE WHTHEWHTICS

 Jhe Excellence Key...

 Jhe Excellence Key...}
$=\frac{\mathrm{b}}{2 \mathrm{a}}\left(\mathrm{a}^{2} \times \frac{\pi}{2}\right)$
$=\frac{1}{4} \pi \mathrm{ab}$
Area enclosed between the chord $A B$ and the arc $A B$ of the ellipse
$=$ Area of ellipse in quadrant I $-\operatorname{Area}(\triangle A O B)$
$=\int_{0}^{a} b \sqrt{1-\frac{x^{2}}{a^{2}}} d x-\frac{1}{2} a b$
$=\frac{1}{4} \pi a b-\frac{1}{2} a b$
$=\frac{(\pi-2) \mathrm{ab}}{4}$
13. Distance between the parallel planes is given by
$\frac{|d-k|}{|\vec{n}|}$
$\vec{r} \cdot 6 \hat{i}-3 \hat{j}+9 \hat{k}+13=0$
$\Rightarrow \overrightarrow{\mathrm{r}} .2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+3 \hat{\mathrm{k}}=-\frac{13}{3}$
$\vec{r} .2 i-1 \hat{j}+3 \hat{k}=4$ and $\vec{r} .2 \hat{i}-\hat{j}+3 \hat{k}=-\frac{13}{3}$
Therefore, the distance between the given parallel planes is
$\frac{\left|4-\left(-\frac{13}{3}\right)\right|}{\sqrt{2+-1+3}}$
$=\frac{\left|4+\left(\frac{13}{3}\right)\right|}{\sqrt{4+1+9}}=\frac{\frac{25}{3}}{\sqrt{14}}=\frac{25}{3 \sqrt{14}}$
14. B_{1} : the bulb is manufactured by machine X
B_{2} : the bulb is manufactured by machine Y
B_{3} : the bulb is manufactured by machine Z
$P\left(B_{1}\right)=1000 /(1000+2000+3000)=1 / 6$
$P\left(B_{2}\right)=2000 /(1000+2000+3000)=1 / 3$
$P\left(B_{3}\right)=3000 /(1000+2000+3000)=1 / 2$
$\mathrm{P}\left(\mathrm{E} \mid \mathrm{B}_{1}\right)=$ Probability that the bulb drawn is defective, given that it is manufactured by machine $X=1 \%=1 / 100$
Similarly, $P(E \mid B 2)=1.5 \%=1.5 / 100=3 / 200$
$P(E \mid B 3)=2 \%=2 / 100$
i.

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{~B}_{1} \mid \mathrm{E}\right)=\frac{\mathrm{P}\left(\mathrm{~B}_{1}\right) \mathrm{P}\left(\mathrm{E} \mid \mathrm{B}_{1}\right)}{\mathrm{P}\left(\mathrm{~B}_{1}\right)\left(\mathrm{PE} \mid \mathrm{B}_{1}\right)+\mathrm{P}\left(\mathrm{~B}_{2}\right)\left(\mathrm{PE} \mid \mathrm{B}_{2}\right)+\mathrm{P}\left(\mathrm{~B}_{3}\right)\left(\mathrm{PE} \mid \mathrm{B}_{3}\right)} \\
& =\frac{\frac{1}{6} \times \frac{1}{100}}{\frac{1}{6} \times \frac{1}{100}+\frac{1}{3} \times \frac{3}{200}+\frac{1}{2} \times \frac{2}{100}} \\
& =\frac{\frac{1}{6}}{\frac{1}{6}+\frac{1}{2}+1} \\
& =\frac{1}{1+3+6}=\frac{1}{10}
\end{aligned}
$$

ii.

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{~B}_{2} \mid \mathrm{E}\right)=\frac{\mathrm{P}\left(\mathrm{~B}_{2}\right) \mathrm{P}\left(\mathrm{E} \mid \mathrm{B}_{2}\right)}{\mathrm{P}\left(\mathrm{~B}_{1}\right)\left(\mathrm{PE} \mid \mathrm{B}_{1}\right)+\mathrm{P}\left(\mathrm{~B}_{2}\right)\left(\mathrm{PE} \mid \mathrm{B}_{2}\right)+\mathrm{P}\left(\mathrm{~B}_{3}\right)\left(\mathrm{PE} \mid \mathrm{B}_{3}\right)} \\
& =\frac{\frac{1}{3} \times \frac{3}{200}}{\frac{1}{6} \times \frac{1}{100}+\frac{1}{3} \times \frac{3}{200}+\frac{1}{2} \times \frac{2}{100}} \\
& =\frac{1}{\frac{1}{3}+1+2} \\
& =\frac{3}{1+3+6}=\frac{3}{10}
\end{aligned}
$$

